Site Survey Tool - TamoGraph

Prev Page Next Page
System Requirements
Driver Installation
Licensing and Trial Version Limitations
Interface Overview
Access Point List
Floor Plan / Site Map
Plans and Surveys, Properties, and Options Panel
Main Menu
Performing a Site Survey
New Project Wizard
Data Collection
Understanding Survey Types: Passive, Active, and Predictive
Active Survey Configuration
Best Practices, Tips, and Tricks
Survey Job Splitting
Predictive Surveys
Drawing Walls and Other Obstructions
Drawing Attenuation Zones
Virtual APs Placement Methods
Manual Placing and Configuring Virtual APs
Automatic Placing and Configuring Virtual APs
Reconfiguring Virtual APs
Working with Presets
Applying Visualizations
Working with Multi-floor Sites
Mixing Real and Virtual Data
Best Practices, Tips, and Tricks
Analyzing Data – Passive and Predictive Surveys
Selecting Data for Analysis
Adjusting AP Locations After Passive Surveys
Splitting an AP into Multiple Unique APs
Working with Multi-SSID APs
Visualization Types
Signal Level
Signal-to-Noise Ratio
Signal-to-Interference Ratio
AP Coverage Areas
Number of APs
Expected PHY Rate
Frame Format
Channel Bandwidth
Channel Map
Analyzing Data – Active Surveys
Selecting Data for Analysis
Visualization Types
Actual PHY Rate
TCP Upstream and Downstream Rate
UDP Upstream and Downstream Rate
UDP Upstream and Downstream Loss
Round-trip Time
Associated AP
Spectrum Analysis
Hardware Requirements
Spectrum Data Graphs
Performing Spectrum Analysis Surveys
Viewing Collected Spectrum Data
Exporting Spectrum Data
Reporting and Printing
Customizing Reports
Google Earth Integration
Configuring TamoGraph
Plans and Surveys
Plan / Map
Client Capabilities
Colors and Value Ranges
AP Detection and Placement
Visualization Settings
Configuring GPS Receiver
Using GPS Configuration Dialog
Finding the GPS Receiver Port Number
Taking Photographs
Voice Control
Using TamoGraph in a Virtual Machine
Frequently Asked Questions
Sales and Support

Signal Level

This visualization shows the signal strength map (also called the coverage map) measured in dBm. Signal strength is one of the most important factors that influence WLAN performance, as in the areas with low signal, establishing a reliable and high-throughput link between the AP and client devices is impossible. Signal level is shown for the AP that has the strongest signal in the given map area among the APs selected for analysis. You can deselect one or several of the selected APs to see the signal level of less strong APs.

A signal level above -60 dBm is considered excellent. Levels between -60 and -85 dBm are mediocre, and levels below -85 dBm provide only marginal connectivity. Signal strength is affected by the distance from the AP, AP output power, type and direction of antenna, and, most importantly, physical obstructions, such as walls, doors, windows, and their material.

Double-clicking on the signal level legend on the status bar allows you to configure the color scheme and change its value range.

Suggested Solutions

When low signal areas are discovered, the following solutions are suggested:

Change AP locations: You should minimize the number of obstructions between the AP and the low signal zone. Additionally, the material of the obstructions plays an important role; for example, the attenuation factor of a brick wall far exceeds that of a cubicle wall or window.
Add more APs: Sometimes repositioning APs does not provide the desired effect, and the option becomes installing additional APs in the problematic areas.
Use a different antenna: A high-gain antenna (if your AP supports the use of such antennae) redirects radio signal in the desired direction, thereby increasing the signal level in some zones and decreasing it in the others.
Increase output power: Some APs allow for the adjustment of the transmission power. However, for most, the maximum power is already set as the default factory setting.